16,210 research outputs found

    Shallow Deep Transitions of Neutral and Charged Donor States in Semiconductor Quantum Dots

    Full text link
    We carry out a detailed investigation of neutral (D0D^0) and charged (D−D^-) impurity states of hydrogen-like donors in spherical semiconductor quantum dots. The investigation is carried out within the effective mass theory (EMT). We take recourse to local density approximation (LDA) and the Harbola-Sahni (HS) schemes for treating many-body effects. We experiment with a variety of confining potentials: square, harmonic and triangular. We observe that the donor level undergoes shallow to deep transition as the dot radius (RR) is reduced. On further reduction of the dot radius it becomes shallow again. We term this non-monotonic behaviour \textbf{SHADES}. This suggests the possibility of carrier {\textbf{\textit{``freeze out''}}} for both D0D^0 and D−D^-. Further, our study of the optical gaps also reveals a {\textbf{SHADES}} transition.Comment: 19 pages, 8 figures, Revised Versio

    GRB000301C with peculiar afterglow emission

    Get PDF
    The CCD magnitudes in Johnson V and Cousins R and I photometric passbands are determined for GRB 000301C afterglow starting ~ 1.5 day after the gamma-ray burst. In fact we provide the earliest optical observations for this burst. Light curves of the afterglow emissions in U, B, V, R, I, J and K' passbands are obtained by combining the present measurements with the published data. Flux decay shows a very uncommon variation relative to other well observed GRBs. Overall, there is a steepening of the optical and near-infrared flux decay caused by a geometric and sideways expanding jet. This is superimposed by a short term variability especially during early time (Delta t < 8 days). The cause of variability is not well understood, though it has occurred simultaneously with similar amplitude in all the filters. We derive the early and late time flux decay constants using jet model. The late time flux decay is the steepest amongst the GRB OTs observed so far with alpha ~ 3. Steepening in the flux decay seems to have started simultaneously around Delta t ~ 7.6 day in all passbands. The value of spectral index in the optical-near IR region is ~ -1.0. Redshift determination with z=2.0335 indicates cosmological origin of the GRB having a luminosity distance of 16.6 Gpc. Thus it becomes the second farthest amongst the GRBs with known distances. An indirect estimate of the fluence > 20 keV indicates, if isotropic,> =10^53 ergs of release of energy. The enormous amount of released energy will be reduced, if the radiation is beamed which is the case for this event. Using a jet break time of 7.6 days, we infer a jet opening angle of ~ 0.15 radian. This means the energy released is reduced by a factor of ~ 90 relative to the isotropic value.Comment: LaTeX file, 11 pages including 4 figures, uses psfig.sty, Bull. Astron. Society of India(accepted, Sept, 2000 issue

    Finite element thermal-structural analysis of cable-stiffened space structues

    Get PDF
    Finite element thermal-structural analyses of large, cable-stiffened space structures are presented. A computational scheme for the calculation of prestresses in the cable-stiffened structures is also described. The determination of thermal loads on orbiting space structures due to environment heating is discussed briefly. Three finite element structural analysis techniques are presented for the analysis of prestressed structures. Linear, stress stiffening, and large displacement analysis techniques were investigated. These three techniques were employed for analysis of prestressed cable structures at different prestress levels. The analyses produced similar results at small prestress, but at higher prestress, differences between the results became significant. For the cable-stiffened structures studied, the linear analysis technique may not provide acceptable results. The stress stiffening analysis technique may yield results of acceptable accuracy depending upon the level of prestress. The large displacement analysis technique produced accurate results over a wide range of prestress and is recommended as a general analysis technique for thermal-structural analysis of cable-stiffened space structures

    Anomalous low level of cosmic ray intensity decreases observed during 1980

    Get PDF
    Past studies have revealed solar cycle changes in the sunspot activity, as well as in many other solar parameters, such as, solar flares and solar coronal holes. These solar features in turn produce the observed cyclic variations in the interplanetary plasma and fields. Both the cosmic ray intensity as well as the intensity of geomagnetic disturbances are affected by the interplanetary changes and produce 11/22 year periodicity. An anomalous situation has been noticed during the year 1980 (period of high sunspot activity), when both the geomagnetic disturbance index Ap, as well as the magnitude and number of Forbush decreases as small. Such an anomaly occurs, in spite of the fact that both the sunspot numbers and the energetic solar flares are almost maximum during the present solar cycle

    BVRI CCD photometric standards in the field of GRB 990123

    Full text link
    The CCD magnitudes in Johnson BVBV and Cousins RIRI photometric passbands are determined for 18 stars in the field of GRB 990123. These measurements can be used in carrying out precise CCD photometry of the optical transient of GRB 990123 using differential photometric techniques during non--photometric sky conditions. A comparison with previous photometry indicates that the present photmetry is more precise.Comment: Tex file, 5 pages with 1 figure. Bull. Astron. Society India, Vol. 27 (accepted

    Finite element thermo-viscoplastic analysis of aerospace structures

    Get PDF
    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations
    • …
    corecore